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Design and Implementation of Practical Step
Detection Algorithm for Wrist-Worn Devices

Yunhoon Cho, Hyuntae Cho, and Chong-Min Kyung, Fellow, IEEE

Abstract— In recent years, interest in wrist-worn devices has
been growing, as market of wearable activity tracking devices
have been enlarged. But, many wrist-worn devices have three
main problems that activity tracking algorithms for wrist-worn
devices should overcome: lack of sensor variety due to power
consumption, low computing power, and noise from various
sensor-carrying modes and walking velocities. This paper dis-
cusses an activity tracking, especially regarding step detection
algorithm using three-axis accelerometer for wrist-worn devices.
The proposed algorithm consists of three phases, which address
the problems of wrist-worn devices. The first data preprocessing
phase calculates the Euclidean norm of the acceleration vector.
It enables the algorithm to track the movement of a device
only with the acceleration data. The second data filtering phase
reduces the noise with a simple digital low-pass filter. Then, the
third peak detection phase adopts a sign-of-slope method and
average threshold method to accurately detect the step peaks
under different sensor-carrying modes and velocity conditions.
A wrist-worn hardware prototype is designed and realized
for algorithm evaluation. The experiment results show that
the proposed algorithm is superior to the compared existing
algorithm and commercial devices. The averaged detection error
is approximately 1% in different test conditions.

Index Terms— Activity tracking, step detection algorithm,
pedometer accuracy, accelerometer, wrist-worn device.

I. INTRODUCTION

RECENTLY, wearable sensor technologies have
developed rapidly and are commonly utilized in a

variety of fields. Wearable devices with different sensors
provide the information regarding the user’s physical
activities, and this information is used in many applications
in fields such as fitness, security, emergency detection, and
entertainment [1].

Concurrently, people’s interest regarding health care and
personal physical activity steadily grows, and health-care

Manuscript received July 18, 2016; revised August 19, 2016; accepted
August 20, 2016. Date of publication August 25, 2016; date of current
version September 28, 2016. This work was supported by the Center for
Integrated Smart Sensors Funded by the Ministry of Science, ICT and Future
Planning through the Global Frontier Project (CISS-2013M3A6A6073718).
The associate editor coordinating the review of this paper and approving it
for publication was Dr. Arindam Basu. (Corresponding author: Hyuntae Cho.)

Y. Cho is with the Smart Sensor Architecture Laboratory, Electrical Engi-
neering Department, Korea Advanced Institute of Science and Technology,
Daejeon 34141, South Korea (e-mail: cyh4565@kaist.ac.kr).

H. Cho is with the Center for Integrated Smart Sensors, Korea Advanced
Institute of Science and Technology, Daejeon 34141, South Korea (e-mail:
phd.marine@kaist.ac.kr).

C.-M. Kyung is with the Electrical Engineering Department, Korea
Advanced Institute of Science and Technology, Daejeon 34141, South Korea
(e-mail: kyung@kaist.ac.kr).

Digital Object Identifier 10.1109/JSEN.2016.2603163

services have consequently started to focus on “activity track-
ing,” whereby personal fitness-related activities are tracked and
monitored in real time. Report by the Futuresource company
predicts that the wearable-gadgets market, especially in fitness-
related areas, will continuously expand, and a market value
will reach more than US $20 billion by 2017 [2]. The health
care service trend in this regard is boosted by the development
of a variety of wearable devices that provide user information
through the functioning of built-in sensors. With the advance-
ment of sensor technology (e.g., accelerometer, GPS, and
gyroscope), wearable devices can now collect a user’s physical
activities in real time; furthermore, this information is used
for various types of activity tracking such as step detection,
walking distance estimation, and emergency detection [3], [4].

As the market of wearable fitness devices is rapidly grow-
ing, a significant amount of research studies on activity
tracking, especially step detection, have been recently con-
ducted [5]–[16]. Some of these studies focus on step detection
or fall detection algorithms for handheld devices like the
smartphone [5]–[7], and for which the machine learning tech-
nique is employed [8]. The data from three-axis accelerometer
that provides the acceleration data of the accelerometer’s x, y,
and z axis and the gyroscope sensor are used for the detection
of the step peak from a noise-added signal through the use
of a number of digital filtering methods. Other researchers
proposed algorithms that target the step detections of waist-
worn or ankle-worn devices [9]–[11], and some of them
tested the commercial wearable gadgets [12]. A research
regarding general-circumstance step detection algorithms with
unspecified device type is not specified has also been
performed [13].

However, wrist-worn devices, which represent a rapidly
rising market in the field of wearable-computing development,
cannot provide similar activity tracking utility levels compared
to the typical handheld, waist-worn, or ankle-worn wearable
devices. The devices typically contain small numbers of sensor
types and they are vulnerable to external error sources such as
the sensor-carrying type or walking velocity variations. Also,
it is typical for wrist-worn devices to require low computing
power owing to size, heat, and battery issues. For many of
the existing activity tracking algorithms, it is assumed that
a tracker is worn in a stable position, and aid is received
from a number of sensors including the accelerometer and
the gyroscope. These algorithms also require a large amount
of computing resources since complex filters and methods
are utilized for their designs. Therefore, it is evident that

1558-1748 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



CHO et al.: DESIGN AND IMPLEMENTATION OF PRACTICAL STEP DETECTION ALGORITHM 7721

wrist-worn devices need an activity tracking algorithm which
satisfies following conditions.

- Deals with a variety of sensing conditions
- Utilizes accelerometer data only for the detection
- Requires a low level of computing resources

In this paper, a step detection algorithm for wrist-worn
wearable devices is proposed. The proposed algorithm utilizes
only the data of a three-axis accelerometer, since wrist-
worn devices are commonly designed with an accelerometer,
while other sensors such as the GPS and the gyroscope are
not frequently supported. Our algorithm is composed of a
data preprocessing phase, a data filtering phase, and a peak
detection phase. Each phase can address the conditions that
algorithms for wrist-worn devices should satisfy. The data-
preprocessing phase involves the calculation of the Euclidean
norm of the acceleration vector, whereby the acceleration
fluctuation is extracted. With the norm of acceleration vec-
tor, we can detect the entire motion of the user without
the data from additional sensors like gyroscope. The data-
filtering phase deals with the signal noise by adopting a simple
digital low-pass filter. During the peak detection phase, the
step is detected by using a combination of the sign-of-slope
method and the average threshold. Existing peak detection
algorithms suffer from detection failure and false detection
when the device is under abnormal conditions like folded-
arms sensor-carrying mode or slow walking velocity. But our
peak detection phase produces accurate detection results even
under abnormal sensing conditions.

To provide criteria for the evaluation of our algorithm,
we test the step detection accuracy of several commercial
wearable-fitness devices with different walking velocities and
sensor-carrying modes: folded arms or pocketed hands for
example. Furthermore, we design a wrist-worn hardware pro-
totype and implement two algorithms, ours and the existing
Pan-Tompkins algorithm that is proposed in [13]. We proceed
with several experiments for which the hardware prototype is
used to evaluate the superiority of the proposed algorithm in
comparison with the others.

The contributions of this proposed algorithm are defined
in terms of three aspects. First, our algorithm can be easily
implemented for the design of common wrist-worn devices
with low computing powers since the algorithm is composed
of simple digital filters and data-processing methods, and thus
has low complexity. Second, the proposed scheme provides
accurate step detection results for different sensor-carrying
modes and walking velocities, as shown in the experiments
of Section V. Finally, our algorithm provides a high accuracy
for step detection with only the use of a three-axis accelerom-
eter, whereby other sensors like the gyroscope and the GPS
are not employed. The proposed algorithm can therefore be
applied to a variety of wrist-worn devices for which only the
accelerometer has been loaded.

II. RELATED WORKS

A. Existing Step Detection Algorithms

As the interest regarding activity tracking continually grows,
many research studies on step detection, one of the main

Fig. 1. Five filters of Pan-Tompkins step detection algorithm.

facets of activity tracking, have been completed. Previous
step detection algorithms can be categorized according to
their data-processing methods: the peak detection method, the
zero-velocity update (ZUPT), and the correlation-calculation
method.

The peak detection method, which counts the step number
by detecting the step peak of an acceleration signal, is widely
used among researchers, as [7], [14], [15], and [21] show. The
peak detection method is commonly used with the threshold,
whereby the peak-acceleration value is checked for whether
it exceeds the given threshold. This method is of a low
complexity and is easy to implement, but the detection result
may be affected by various external noise sources such as the
user’s sensor-carrying mode.

In references [6], [10], [11], [16], and [20], the authors apply
the zero-velocity update (ZUPT) method for the detection of
the user’s steps. The ZUPT concept is based on the idea that
one zero-velocity moment should occur when a user walks a
single step. Algorithms for which the ZUPT is incorporated
count the number of zero-velocity moments for the calculation
of the step number.

One research study tried a correlation-calculation method
for the detection of the user’s steps [17]; here, the scheme
is used to calculate the autocorrelation of the acceleration
data with a determined start point and end point. If the
autocorrelation value exceeds a certain threshold, one step is
detected.

With an understanding of these step detection methods, a
peak detection method of a very low complexity is selected for
our algorithm, whereby filtering and threshold methods can be
used to compensate for any detection errors that occur while
applying the peak detection method.

B. Pan-Tompkins Step Detection Algorithm

Proposed in 1985 by Pan and Tompkins, the Pan-Tompkins
method is widely known as a real-time R-peak detection
algorithm for ECG signals [19]. The Pan-Tompkins method
contains several digital filters that allow for a fast execution,
and [13] suggested that these filters can be applied to a
general step detection algorithm for which the acceleration
signal is utilized. Specifically, the Pan-Tompkins step detection
algorithm consists of five digital filters as shown in Fig. 1.

The first filter is a low-pass filter that reduces the influence
of external noise and smoothens the signal. A digital low-pass
filter with small integer coefficients for a fast execution is
used for the Pan-Tompkins method. After filtering, the signal
is differentiated through a derivative operator for the provision
of slope information. In practice, this process suppresses the
low-frequency components and enlarges the high-frequency
components. The squaring operator, which squares the sig-
nal value point by point, functions after the differentiation
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Fig. 2. Acceleration signal (a) and sign-of-slope result (b) where the unit
“G” is for the gravitational acc. (1 G = 9.8m/s2)

process and leads to positive signal values, whereby the large
values are enhances more than the small values to make
the peak analysis easier. Since the signal after the squaring
process comprises multiple peaks, a smoothing process that is
achieved through a moving-window operation is needed for
the improvement of the peak detection.

With the previous filters, the acceleration signal is processed
for the step detection and the final process of the method,
the peak detection procedure, is then completed. Various peak
detection methods are used for step detection and the “simple
sign-of-slope” peak detection method was selected for the
Pan-Tompkins algorithm that is proposed in [11] to enable
a fast execution. The simple sign-of-slope method processes
the signal in three steps. First, it converts the signal to the
bit stream of −1, 0, and 1 according to the signal slope;
specifically, the signal is converted to 1 if the signal slope is
positive, and −1 if the slope is negative. After the conversion,
the number of peaks is calculated by counting [1 −1] since
the upward and downward slopes define the peak. Figure 2
shows the results of the sign-of-slope method.

Based on these discussions, we propose a step detection
algorithm for wrist-worn devices for which only three-axis
accelerometer data is used; furthermore, the algorithm can
be used to accurately count the step number at different
walking velocities and under varying sensor-carrying mode
circumstances. Since the Pan-Tompkins algorithm is a general
algorithm for which the device type is not considered, our
algorithm and the Pan-Tompkins algorithm are tested in terms
of the step detection accuracy; as a result, our algorithm
shows a step detection accuracy that is greater than that of the
Pan-Tompkins algorithm.

III. ACTIVITY TRACKING ALGORITHM

In this section, we propose a step detection algorithm for
wrist-worn device, which is composed of three phases: data
preprocessing, data filtering, and peak detection. Fig. 3 briefly
shows the executions of three phases.

Fig. 3. Three processes of our step detection algorithm.

Fig. 4. The three-axis coordinate of the wrist-worn device.

Fig. 5. DC or fixed noise blocking process.

A. Data Preprocessing Phase

In this phase, raw three-axis acceleration data is gathered
from a wrist-worn device with a pre-determined sampling rate.
For the wrist-worn device, the coordinate system is defined rel-
ative to the accelerator chip as shown in Fig. 4. At time ti , the
sensed acceleration vector and the values from the three-axis
accelerometer are defined as �A (ti ) = (

ax (ti ) , ay (ti ) , az (ti )
)
.

After the acquisition of �A (ti ), the data is preprocessed using
the Euclidean norm calculation

∥
∥∥ �A(ti )

∥
∥∥ = uacc(ti ), and DC or

fixed noise blocking. Fig. 5 shows the DC blocking process.
A user’s walking causes arm movements and this movement

is transferred to the wrist-worn device. The variation of
the sensed acceleration values from the wrist-worn device
therefore represents the movement of the device allowing
for the detection of the user’s walking. The raw acceleration
values from the device should be processed with the use of
several methods since the values do not directly represent the
actual walking of the user and this processing is performed
during the data-preprocessing phase. Specifically, when a user
walks arbitrarily with a wrist-worn device, the information of
the user’s movement is distributed through the acceleration
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Fig. 6. X-, Y-, and Z-axes acceleration data and their DC-blocked norm.

of the X, Y, and Z axes; therefore, one should observe the
acceleration variations of all three axes, or the acceleration
vector �A(t) to track the user’s entire movements rather than
using the acceleration data of one or two axes.

Several methods can be used for the gathering of the entire
information regarding the acceleration of the three axes, such
as the coordinate rotation of [3] or the use of a gyroscope
for device-orientation detection, but the angle information of
the device is needed for a calculation of the orientation of
the sensor, whereby a relatively high computing power and
extra sensors are required. Therefore, we propose the concept
of the Euclidean norm, shortened to “norm,” regarding the
acceleration vector for a fast and simple detection of the
movement of the device that is not dependent on angle or
orientation information. The definition of the Euclidean norm
is as follows: Assume the existence of a three-dimensional
Euclidean space vector �A = (a, b, c) . To evaluate the size
of the vector, a one-dimensional factor should represent the
size and the Euclidean norm is this factor. The formula of the
Euclidean norm is as follows:

∥∥
∥ �A

∥∥
∥ =

√
a2 + b2 + c2

For our algorithm, the Euclidean norm of the acceleration
vector �A (ti ), which varies as the user walks, is calculated
as follows:

∥
∥
∥ �A(ti )

∥
∥
∥ = uacc (ti ) =

√
ax (ti )2 + ay (ti )2 + az (ti )2

Notably, a nonzero DC component that hides the step informa-
tion and reduces the accuracy of the peak detection procedure
can be relevant here. We therefore adopt the DC-blocking
process for the norm uacc(ti ) by subtracting the moving

Fig. 7. Original acceleration norm (a) and low-pass filtered norm (b).

average of the norm from the original norm as follows:

uacc,0 (ti ) = uacc (ti ) − 1

N

i∑

k=i−N+1

uacc(tk)

The moving of the average window size N is empirically
determined as 20.

We track the variation of the DC-blocked Euclidean norm
of the acceleration vector uacc,0 (ti ) for the detection of the
user’s walking. Figure 6 shows the acceleration signals of the
X, Y, and Z axes and their DC-blocked norm.

B. Data Filtering Phase

The acceleration data from a wrist-worn device is vulnerable
to the noise from external circumstances such as the sensor-
carrying modes of the user. This signal noise affects the
calculated norm and the peak detection that leads to the
filtering of the norm in the data-filtering phase.

For a fast execution and a low-complexity method, we
adopt a digital low-pass filter for the data filtering phase.
Human-movement information occurs under a frequency
of 20 Hz [22]. So a low-pass filter with a cutoff frequency of
20 Hz is designed for this phase. The transfer function H(z)
and the difference equation y[n] of the filter are as follows.

H (z) = 1

16

(1 − z−4)
2

(1 − z−1)
2

y [n] = 1

16
(x [n] + 2x [n − 1] + 3x [n − 2] + 4x [n − 3]

+ 3x [n − 4] + 2x [n − 5] + x [n − 6])

In these equations, “z” is the complex frequency of the system
in frequency domain. “x” is the system input in discrete time
domain. And “n” is the time in discrete time domain.

Fig. 7 shows the input and output of data filtering phase.
Fig. 7 (a) is DC blocked acceleration norm, uacc,0, and
Fig. 7 (b) is low-pass filtered norm, which is the output of data
filtering phase. After the data filtering phase, low-pass filtered
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Fig. 8. Flow chart of the peak detection phase (a) and signal processing result of peak detection phase (b).

norm shows smoother signal and the step peaks become more
significant than uacc,0.

C. Peak Detection Phase

In Section II, the different step detection methods, such as
ZUPT and autocorrelation-matching, are discussed. But the
algorithm complexity of these methods is relatively high and
they are therefore not suitable for the type of wrist-worn device
that is targeted in this study; therefore, the peak detection
phase is included for the step detection process. A peak
detection method for which the sign-of-slope method and the
average threshold are used for the achievement of both a fast
execution and the compensation of the signal noise after the
low-pass filtering is proposed in this paper.

The basic idea of our peak detection method is as follows:
The filtered acceleration norm is converted to the bit stream
of 1 and −1, whereby BSOS = {bsos(ti )}, through the sign-
of-slope process. In specific, bit bsos(ti ), slope of the norm
signal at time ti , has a value of 1 if the slope is positive
and −1 if the slope is negative. Thus a couple of bits
[bsos (ti ) = 1 bsos (ti+1) = −1] represent the local maximum,
and [bsos (ti ) = −1 bsos (ti+1) = 1] represent the local
minimum as Fig. 8(b) shows. Therefore, the candidates of
the local maximum and local minimum of the norm are then
found by searching the [1 −1] bit that represents the local

maximum, and the [-1 1] bit that represents the local minimum
in BSOS. After the lists of candidates for the local maximum,
PL ,MAX = {

pl,max(ti )
}
, and the local minimum, PL ,MIN ={

pl,min(ti )
}
, are made, the average threshold THRavg(ti ) of

the norm that is determined by the moving average of the
norm values is calculated. The candidates, pl,max (ti ) and
pl,min(ti ), are then evaluated for whether they are the true
local maximum and the true local minimum through the
checking of the condition—the true local maximum should
come after the true local minimum, and vice versa—and the
values are then compared with THRavg(ti ). The number of
steps are detected by counting the number of either the true
local maximum, TPL ,MAX = {

t pl,max(ti )
}
, or the true local

minimum, TPL ,MIN = {
t pl,min(ti )

}
.

We now explain each of the steps of the peak detection
phase more specifically.

First, the filtered acceleration norm passes the sign-of-slope
process and the stream of [1 −1] bits are produced according
to the slope of the given norm; specifically, the sign-of-slope
bit bsos (ti ) = 1 if uacc,0 (ti ) > uacc,0 (ti−1) and bsos (ti ) = −1
if uacc,0 (ti ) < uacc,0 (ti−1).

The [1 −1] bit therefore represents the local maximum of
the signal and the [-1 1] bit represents the local minimum;
however, these detected local maximums and local minimums
may not be true representations, and false detection can occur
during the bit-check process as shown in Fig. 9. These detected
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Fig. 9. False detection during [1 −1] and [−1 1] bit check.

local maximums and local minimums are therefore set from
the bit-check process regarding the candidates for the true local
maximums and local minimums, PL ,MAX = {

pl,max(ti )
}

and
PL ,MIN = {

pl,min(ti )
}
, and they are evaluated to determine

the true peaks according to the following two criteria:.
1) The true local maximum should come after the true local

minimum, and vice versa: If pl,max (ti+1) comes after
t pl,max(ti ) and not t pl,min(ti ), pl,max(ti+1) cannot be a
true local maximum, t pl,max(ti+1).

2) The true local maximum should exceed the average
threshold and the true local minimum should be less
than the average threshold: tpl,max (ti ) > THRavg(ti ) and
tpl,min (ti ) > THRavg(ti ).

The average threshold of the filtered norm, THRavg (ti ),
is calculated according to the moving average of the norm
with an empirically determined window size of N = 10 as the
following formula shows:

THRavg (ti ) = 1

N

i∑

k=i−N+1

uacc,0 (tk)

If the candidates, PL ,MAX and PL ,MIN , satisfy the two criteria,
they are selected as the true local maximums and local
minimums, TPL ,MAX and TPL ,MIN . And the number of steps
is finally determined by the counting of the number of pairs of
the true local maximum and the true local minimum. Figure 8
shows a flow chart of the peak detection phase (a) and the
peak detection result of the filtered norm signal (b).

IV. PROTOTYPE OF THE SYSTEM

Figure 10 shows the step detection device that was
developed for this study, where (a) illustrates the block dia-
gram of the system and (b) is the hardware prototype. This
device measures personal activity such as steps, health, and
environmental-contamination exposure. The device uses an
ST Microelectronics STM32f4xx (ARM Cortex-M4) chip that
runs the FreeRTOS operating system. This micro-controller
unit (MCU) provides a sound performance and convenient
functions for our purposes. We added a FAT32 file system [18]
on this MCU to record the measured data and the event history.
To measure acceleration, the device uses the Analog Device
ADXL362 three-axis accelerometer, which is an ultra-low-
power IC that consumes 1.8 µA at a 100 Hz output-data
rate (ODR) with a 2.0 V supply. We set the ODR to 20 Hz to
greatly reduce the power consumption. Measurement ranges
of ± 2 g, ± 4 g, and ± 8 g are available with a resolution
of 1 mg/LSB on the ± 2 g range. We set the basic gravity
to ± 2 g.

Fig. 10. Wrist-worn device for step detection: (a) block diagram and (b)
hardware prototype.

The device includes other components such as sensors,
a power-management IC, and a communication module for
the provision of further functions as shown in Figure 10 (a).
It contains two digital sensors (temperature/humidity and
UV-/ambient-light sensing) and four analog sensors (O3, NOx,
COx, and VOCs) for the measurement of ambient air pollution.
Each sensor has a small form factor and consumes less energy
than the traditional wearable-device sensors. A 2.8-inch LCD
display with a capacitive touch panel is also part of the
design for the display of the device’s status and other relevant
information. The sensed data through the device is transferred
to the Internet via a smartphone or a gateway. The device
uses a BLE module (Microchip RN4020) that consumes a
low amount of energy (17 mA @ Tx) when the sensing data
is transmitted. This device is used to extract the acceleration
data and for the evaluation of the proposed method. We deal
again with this device and the corresponding experiments
in Section V.

V. EXPERIMENTS AND PERFORMANCE EVALUATION

A. Experiments for Step Detection Algorithm

For this paper, a simple step detection algorithm for
wrist-worn devices is formulated and implemented on a
wrist-worn prototype device. To evaluate the accuracy of our
algorithm, we proceed with a number of treadmill experiments
for which the prototype hardware and commercial pedometers
are used.
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Fig. 11. Four tested sensor carrying modes.

Fig. 12. Tested commercial pedometers.

As mentioned previously, a wrist-worn device is commonly
exposed to a variety of conditions that vary according to the
user’s sensor-carrying mode or velocity. We therefore select
four major sensor-carrying modes and four walking velocities
that represent a variety of circumstances that such a device is
likely to be exposed to. The four sensor-carrying modes, as
shown in Fig. 11, are as follows:

1) Normal Walking
This mode is the basic sensor-carrying mode for which
the user walks with normally swinging arms. The device
experiences a pendular movement and the acceleration-
norm signal reveals the step peak clearly.

2) Pocketed Hands
This mode refers to the case where the user walks with
both hands in pockets. In this case, the step peaks of the
signal might be smaller than those of mode 1.

3) Grab Phone (Hand Texting)
This mode includes the case where the user walks while
grabbing a handset or texting a message on the handset.
In this case, the device is almost stationary.

4) Folded Arms
This mode refers to the case where the user folds his/her
arms. The device is also quasi-stationary in this case.

The four selected walking velocities are as follows:
1) 2.5km/h: Slow walking
2) 4.5km/h: Normal walking
3) 6.5km/h: Fast walking
4) 8.5km/h: Normal running
If the user moves faster, the step peaks become larger and

close to each other. And in the case of running, the growth of
the step peaks is very large.

We proceed with the treadmill experiments for which the
commercial pedometers and our prototype hardware are used
by changing the previously mentioned factors. Through the
performance of these experiments, it is possible to determine
the accuracy of the algorithm when the device is exposed to
various error sources.

At first, we set the step detection accuracy as a criterion
by measuring the step detection accuracy with the selected
commercial pedometers. The current commercial pedometers
can be classified into the following three types: smartwatch,
smartband, and handheld device. And specific devices are
selected for each type. Figure 12 shows the variety of tested
commercial devices.

The step detection accuracy measurements of the commer-
cial pedometers are undertaken during a treadmill experiment.
With the use of different sensor-carrying modes and velocities,
500 steps are completed on the treadmill through walking or
running, and the detection error is calculated according to the
following formula:

Error (%) = 100 ∗ |Detected Step Number − 500(steps)|
500(steps)

To accurately compare all commercial devices, we proceed
with the experiments wherein all of the devices are worn at
once. We walk on the treadmill at 4.5 km/h when we test the
step detection accuracies with different sensor-carrying modes,
and we walk with the sensor-carrying mode 1 when we tested
the walking velocity variation case.

In terms of the prototype experiments, a different protocol is
set for the purpose of convenience. We walk for a 120 seconds
on the treadmill with different sensor-carrying modes and
velocities. While undertaking the experiments, the hardware
prototype is worn on our wrists and the ground-truth step
numbers are counted.

Figure 13 shows the test conditions of the commercial
pedometers and our hardware prototype.

B. Step Detection Accuracy With Different Sensor-carrying
Modes and Velocity Circumstances

The step detection accuracy of our algorithm is evaluated
through its implementation in the design of our wrist-worn
hardware prototype. We also implement the existing general
step detection Pan-Tompkins algorithm for a comparison.
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Fig. 13. Test conditions of commercial pedometers (a) and our hardware prototype (b).

TABLE I

EXPERIMENT RESULTS OF STEP DETECTION ERROR WITH DIFFERENT SENSOR-CARRYING MODES

TABLE II

EXPERIMENT RESULTS OF STEP DETECTION ERROR WITH DIFFERENT WALKING VELOCITIES

The step detection error is calculated using 20 test data from
the treadmill experiments.

From Table I, it is evident that our algorithm outperforms
the Pan-Tompkins algorithm through its revelation of the
detection error at around 1 % in all four of the sensor-carrying
modes. The Pan-Tompkins algorithm shows the step detection
error at around 0.5 % in mode 1, but the detection errors in
modes 2, 3, and 4 all exceed 20 %.

This detection error tendency is also shown in the
walking-velocity-variation experiments. Table II shows
the experiment results with different walking velocities.
From the results, we can see that the detection error of our
algorithm is around 1 % in all four velocities; in contrast,
the performances of the Pan-Tompkins algorithm for slow
walking (2.5 km/h), fast walking (6.5 km/h), and normal
running (8.5 km/h) are problematic with detection errors of
more than 15 %. The detection accuracy of the Pan-Tompkins
algorithm for normal walking (4.5 km/h), however, is sound.
Since a simple low-pass filter is adopted for data filtering
with respect to our algorithm, and the steps are detected
through the peak detection method that might produce a
significant error, our algorithm could show a high detection
error when the device is under different sensor-carrying
modes or walking velocities. However, the experiment result
shows that our algorithm can deal with the detection noises
from different sensor-carrying modes and walking velocities.
The high detection accuracy of the proposed algorithm in
various test conditions is from the improved peak detection
phase. It is clear that abnormal sensor-carrying modes and

walking velocities can cause unclear step peaks and signal
noises. And existing peak detection methods cannot deal
with these problems properly. Therefore, they are vulnerable
to sensor-carrying mode or walking velocity variations.
However, our peak detection phase can compensate the signal
noises through average threshold. Also, two criteria for true
step peaks enables the proposed algorithm to detect the
unclear step peaks correctly.

The detection accuracy degradation of the Pan-Tompkins
algorithm under various conditions can be explained by its
signal waveform after the filtering process. Figure 14 shows
the signal waveforms after our filtering phase and the Pan-
Tompkins filters with different sensor-carrying modes and
walking velocities. In “mode 1: normal walking,” the signals
after our filtering phase and the Pan-Tompkins filters both
reveal the step peak, and step detection errors of less than
1 % are consequently produced; however, the signals from
the Pan-Tompkins filters in modes 2, 3, and 4 reveal distorted
step peaks that are affected by noises. The appearance of these
peaks is due to a reduction of the signal power by the filters of
the Pan-Tompkins algorithm, whereby the simple sign-of-slope
peak detection phase for which a proper compensation or
noise-recognition method does not apply cannot find the
difference from the real step peaks and signal noises as a
result. These ambiguous step peaks cause a false detection
and the Pan-Tompkins algorithm therefore produces a detec-
tion error of more than 20 %; moreover, the Pan-Tompkins
algorithm shows its weakness in the 2.5 km/h, 6.5 km/h,
and 8.5 km/h cases. The Pan-Tompkins algorithm also shows
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Fig. 14. Signals after our filtering process and Pan-Tompkins filters with different sensor-carrying modes and velocities.

a poor detection performance with detection errors of more
than 25 % in the fast-walking and normal-running cases.
While the reason for this accuracy degradation seems to
again be the signal waveform after the filtering process,
it is also caused by the reduced distances between the step
peaks when the user moves quickly, whereby the filters of
the Pan-Tompkins algorithm cannot separate the close step
peaks and the step peaks are eventually merged through
the filtering process. In the “2.5 km/h: slow walking” case,
the cause of the high detection error seems to be a false
detection from the use of the sign-of-slope peak detection
method.

Regarding the comparison between our algorithm and the
general Pan-Tompkins algorithm, we also tested the step detec-
tion performance of our algorithm by using the protocols that
were explained earlier in this paper to acquire the detection-
error data of the commercial pedometer devices. The step
detection error was calculated by using 20 test data from the
treadmill experiments.

Figure 15 shows the step-detection-error chart of the
commercial devices and our algorithm with (a) different
sensor-carrying modes and (b) walking velocities. The results
show that the detection errors of the proposed algorithm

are around 1 % in all of the cases, which means that the
commercial pedometers are outperformed.

From the results of Fig. 15 (a), the SKT Smartband shows
the worst average detection accuracy in terms of the different
sensor-carrying modes among the tested wrist-worn devices.
The SKT Smartband showed a relatively effective sensitivity
for the detection of steps while the user walks normally, but
it produces a detection error of more than 15 % if the user
walks with different sensor-carrying modes that produce step
peaks that are smaller than those of mode 1; therefore, it is
reasonable to conclude that the SKT Smartband cannot detect
steps accurately if the motion of the device is smaller than that
of the normal case. Regarding the other wrist-worn devices
such as the Motorola moto360 and the Samsung Gear S,
we observed good detection performances for all four of the
carrying modes, but carrying modes for which the detection
errors are more than 2.5 % were also identified here; for
example, the Samsung Gear S shows a detection error of
around 1 % for modes 2, 3, and 4, while its performance
is degraded to 7.3 % in mode 1. The experiments show that
the Samsung Gear S can properly detect steps when the device
is quasi-static, but it cannot accurately detect the steps of a
user who swings his/her arms. The iPhone 6 Health shows
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Fig. 15. Step detection errors of commercial devices and our algorithm with (a) different sensor-carrying modes and (b) walking velocities.

relatively high detection errors, which are around 10 %, in all
four of the modes.

Figure 15 (b) shows the detection accuracy results of the
commercial devices at different walking velocities. The SKT
Smartband and iPhone 6 Health show high detection errors
for the “2.5 km/h: slow walking” case. These results make
sense since the step peaks are small in the slow-walking
case and difficulties are encountered regarding the detection
of small step peaks, as the sensor-carrying-mode experiments
show. The Motorola moto360 and Xiaomi Mi band show high
detection errors for the fast-walking case of 6.5 km/h. The
iPhone 6 Health shows a higher detection accuracy if the user
moves faster, and the average accuracy of the four velocity
cases is 15.95 %, which is the worst performance among the
commercial pedometers.

C. The Trade-off Between Using Additional Sensors
and Power Consumption

As we mentioned in the previous part of the paper, wrist-
worn devices commonly load only three-axis accelerometer
due to the power consumption. And the proposed algorithm
targets the devices that loads the accelerometer only. However,
it is evident that the detection accuracy may go up with the
aid of additional sensors, such as gyroscope or magnetometer.
Therefore, the analysis of the tradeoff between using additional
sensors and power consumption may be needed.

To check the benefit of using additional sensors regarding
detection accuracy, we have searched the studies on the
step detection using additional sensors, especially gyroscope.
And, [6] and [9] matched the condition. In [6], the averaged
detection accuracy was 99.2%. And the averaged detection
accuracy of [9] was 99.5%. Considering that our algorithm
has an averaged detection accuracy of 99% in different

TABLE III

POWER CONSUMPTION OF IMUS (ACC. AND GYRO.)

sensor-carrying modes and walking velocities, using additional
gyroscope does not result in significant improvement on detec-
tion accuracy.

However, the power consumption of the gyroscope modules
is relatively high. We have searched the power consumption
of several commercial IMUs that have both accelerometer
and gyroscope modules as table III shows. In contrast, the
accelerometer module which we used, AD ADXL362, has a
power consumption of 20µW. Therefore, it is certain that the
power consumption rises drastically when we use additional
sensors for the detection.

With these discussions, it can be summarized that using
additional sensors for wrist-worn device has not much benefit.

VI. CONCLUSION

In this paper, we have suggested a practical step detection
algorithm for wrist-worn devices. A step detection algorithm
for a wrist-worn device needs to be of a low complexity,
and accurate detection results need to be produced for the
various sensor-carrying modes and velocity circumstances,
since the computing power of wrist-worn devices is typi-
cally low and they are exposed to various noise sources.
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The proposed algorithm is composed of the following three
main phases: data preprocessing phase, data filtering phase,
and peak detection phase. The acceleration data from a three-
axis accelerometer were transformed into a norm value, and
the DC data are blocked in the preprocessing phase before they
are filtered through a simple digital low-pass filter. Lastly, the
sign-of-slope method is used to apply an adaptive threshold to
the filtered data for the detection of the step peak. We evaluated
our algorithm, including a comparison of its step detection
accuracy with those of the commercial pedometers and an
existing general step detection algorithm for which our wrist-
worn hardware prototype was used. The experiment results
indicate that the proposed algorithm outperforms other com-
mercial devices and the Pan-Tompkins algorithm in terms of
the step detection accuracy for all four sensor-carrying modes
and all four walking velocities. In the future, we will use the
results of this paper as the basis for research regarding sensor-
carrying mode detection and walking-distance estimation.
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