

LCD Module Product Specification

Ordering No: JHD12864-G176BSW

Model No: JHD12864-G176BSW (For JHD internal use only)

(RoHS Compliant Product)

Customer Approval: Customer P/N: Approved for sample making. Approved for pilot production. Please specify minimum quantity (if any) ______ pcs Approved for mass production. Customer Signature and Date:

Written By	Written By	Checked By	Approv	ed By
(Electrical)	(Mechanical)	(R&D)	R&D	QA

Revision	Date	Description	Written By	Approved By
.0	09-Jul-2014	<u>-</u>		

CONTENTS

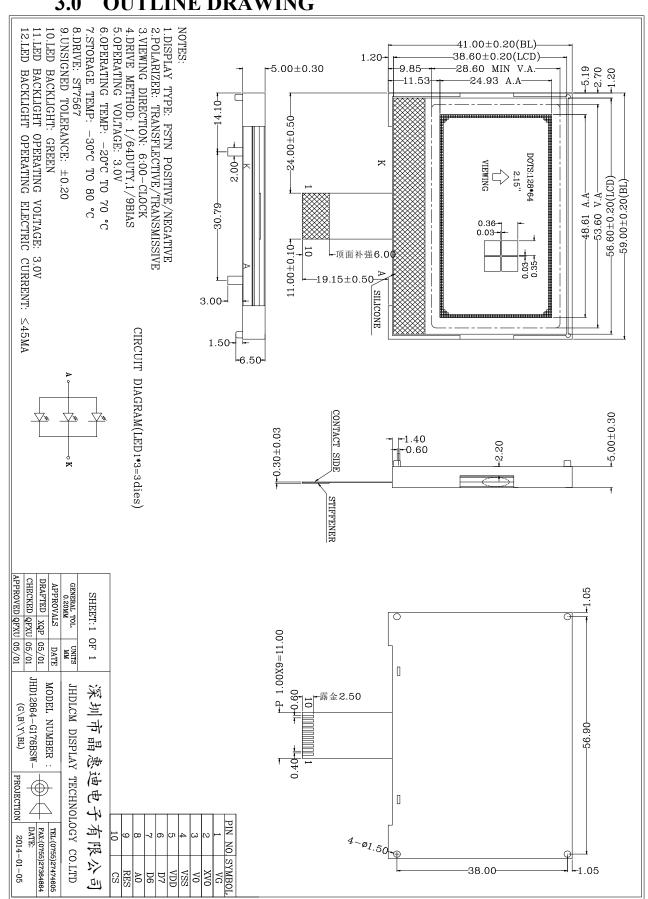
1.0	GENERAL SPECIFICATION
2.0	LCM NUMBERING SYSTEM
3.0	OUTLINE DRAWING
4.0	INTERFACE PIN DESCRIPTION
5.0	BLOCK DIAGRAM
6.0	OPERATING PRINCIPLE & DRIVING METHOD
7.0	ABSOLUTE MAXIMUM RATINGS
8.0	ELECTRICAL CHARACTERISTICS
9.0	ELECTRO-OPTICAL CHARACTERISTICS
10.0	STANDARD SPECIFICATION FOR RELIABILITY
11.0	QUALITY ASSURANCE
12.0	PRECAUTIONS FOR USING LCD MODULE
13.0	MANUFACTURER CONTACT

1.0 GENERAL SPECIFICATION

Item	Contents	Unit
LCD type	FSTN POSITIVE/NEGATIVE	-
Viewing direction	6:00	O'Clock
Module size (H×W×T)	41.00×59.00×5.0 (excluded FPC length)	mm
Viewing area (H×W)	28.60×53.60	mm
Driver IC	ST7567	-
Number of dots	128X64	-
Backlight type	3 LEDS Green 3.0V 45mA	-
Interface type	Serial interface	-
Operating temperature	-20 ~ 70	°C
Storage temperature	-30 ~ 80	°C

2.0 LCM NUMBERING SYSTEM

$\underset{(1)}{\underline{JHD}}\ \ \underset{(2)}{\underline{12864}}\ \underline{G176BSW}$

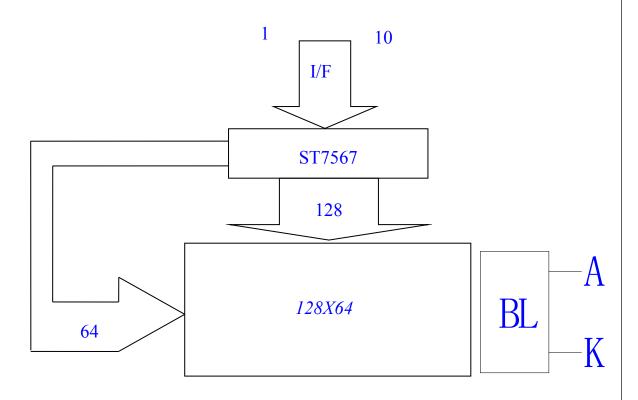

- (1) ShenZhen JHDLCM Electronic Co Ltd
- (2) Number of dots
- (3) Serial number

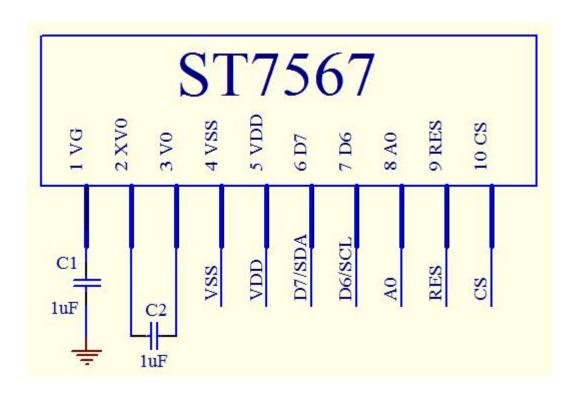
深圳市晶惠迪电子有限公司

Electronics Co.,Ltd JHDLCM

OUTLINE DRAWING 3.0

4.0 INTERFACE PIN DESCRIPTION


Pin No.	Symbol	Pin Description
1	VG	VG is the LCD driving voltage for segment circuits at positive frame
2	XV0	XV0 is the LCD driving voltage for common circuits at positive frame
3	V0	V0 is the LCD driving voltage for common circuits at negative frame
4	VSS	Ground
5	VDD	Power supply (+3.0)
6	D7	Seriel data input
7	D6	Serial clock input
8	A0	Data or command select signal input
9	RES	A reset pin.
10	CS	Chip select signal input(low active)



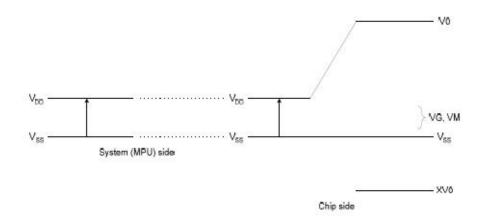
深圳市晶惠迪电子有限公司

JHDLCM Electronics Co.,Ltd

5.0 BLOCK DIAGRAM

OPERATING PRINCIPLE & DRIVING METHOD 6.0

		R/W			С	OMMA	ND BY	ΓE			DESCRIPTION
INSTRUCTION	A0	(RWR)	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION
(1) Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=1, display ON D=0, display OFF
(2) Set Start Line	0	0	.0	1	S5	S4	S3	S2	S1	S0	Set display start line
(3) Set Page Address	0	0	1	0	1	1	Y3	Y2	Y1	Y0	Set page address
(4)	0	0	0	0	0	1	X7	X6	X5	X4	Set column address (MSB)
Set Column Address	0	0	0	0	0	0	Х3	X2	X1	X0	Set column address (LSB)
(5) Read Status	0	1	0	MX	D	RST	0	0	0	0	Read IC Status
(6) Write Data	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write display data to RAM
(7) Read Data	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read display data from RAM
(8) SEG Direction	0	0	1	0	1	0	0	0	0	MX	Set scan direction of SEG MX=1, reverse direction MX=0, normal direction
(9) Inverse Display	0	0	1	0	1	0	0	1	1	INV	INV =1, inverse display INV =0, normal display
(10) All Pixel ON	0	0	1	0	1	0	0	1	0	AP	AP=1, set all pixel ON AP=0, normal display
(11) Bias Select	0	0	1	0	1	0	0	0	1	BS	Select bias setting 0=1/9; 1=1/7 (at 1/65 duty)
(12) Read-modify-Write	0	0	1	1	1	0	0	0	0	0	Column address increment: Read:+0 , Write:+1
(13) END	0	0	1	1	1	0	1	1	1	0	Exit Read-modify-Write mode
(14) RESET	0	0	1	1	1	0	0	0	1	0	Software reset
(15) COM Direction	0	0	1	1	0	0	MY	328	-	48	Set output direction of COM MY=1, reverse direction MY=0, normal direction
(16) Power Control	0	0	0	0	1	0	1	VB	VR	VF	Control built-in power circuit ON/OFF
(17) Regulation Ratio	0	0	0	0	1	0	0	RR2	RR1	RR0	Select regulation resistor ratio
(10) Cot EV	0	0	1	0	0	0	0	0	0	1	Double command!! Set
(18) Set EV	0	0	0	0	EV5	EV4	EV3	EV2	EV1	EV0	electronic volume (EV) level
	0	0	-1	1	1	1	1	0	0	0	Double command!!
(19) Set Booster	0	0	0	0	0	0	0	0	0	BL	Set booster level: BL=0: 4X BL=1: 5X
(20) Power Save	0	0			Co	mpound	Comm	and			Display OFF + All Pixel ON
(21) NOP	0	0	1	1	1	0	0	0	1	1	No operation
(22) Test	0	0	1	1	1	1	1	1	1	-50	Do NOT use. Reserved for testing.


Note: Symbol "-" means this bit can be "H" or "L".

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System; please refer to notes 1 and 2.

Parameter	Symbol	Conditions	Unit
Digital Power Supply Voltage	VDD1	-0.3 ~ 3.6	V
Analog Power supply voltage	VDD2, VDD3	-0.3 ~ 3.6	V
LCD Power supply voltage	V0-XV0	-0.3 ~ 16	V
LCD Power supply voltage	VG	-0.3 ~ 3.6	V
LCD Power supply voltage	VM	-0.3 ~ VDD2	V
Input Voltage	Vi	-0.3 ~ VDD1+0.3	V
Operating temperature	TOPR	-30 to +85	.c
Storage temperature	TSTR	-55 to +125	.c

Notes

- Stresses above those listed under Limiting Values may cause permanent damage to the device.
- 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted.
- 3. Insure the voltage levels of V0, VDD2, VG, VM, VSS and XV0 always match the correct relation: $V0 \ge VDD2 > VG > VM > VSS \ge XV0$

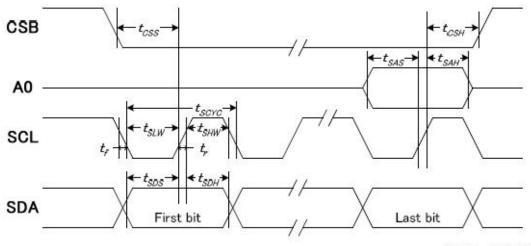
ELECTRICAL CHARACTERISTICS

VSS=0V; Tamb = -30 C to +85 C; unless otherwise specified.

ltom.	Cumbal		ndition		Rating	1	Unit	Applicable
Item	Symbol		ondition	Min.	Тур.	Max.	Unit	Pin
Operating Voltage (1)	VDD1			1.7	-	3.3	V	VDD1
Operating Voltage (2)	VDD2			2.4		3.3	V	VDD2
Operating Voltage (3)	VDD3			2.4	-	3.3	V	VDD3
Input High-level Voltage	V _{IHC}			0.7 x VDD1	-	VDD1	V	MPU Interface
Input Low-level Voltage	VILC			VSS1	1	0.3 x VDD1	V	MPU Interface
Output High-level Voltage	Vonc	I _{OUT} =1mA, VDD1=1.8V		0.8 x VDD1	-	VDD1	V	D[7:0]
Output Low-level Voltage	Volc	I _{OUT} =-1mA, VDD1=1.8V		VSS1	223	0.2 x VDD1	V	D[7:0]
Input Leakage Current	lu			-1.0	_	1.0	μΑ	MPU Interface
Output Leakage Current	I _{LO}			-3.0	1	3.0	μА	MPU Interface
Liquid Crystal Driver ON	2	T. 05'0	Vop=8.5V, ∆V=0.85V	<u> </u>	0.6	8.0	ΚΩ	COMx
Resistance	Ron	Ta=25°C	VG=1.9V, ∆V=0.19V	2 	1.3	1.5	ΚΩ	SEGx
Frame Frequency	FR	Duty=1/65, Vop=8.5V Ta = 25℃		70	75	80	Hz	

Current consumption: During Display, with internal power system, current consumed by whole IC (bare die).

Test Pattern	Cumbal	Condition		Rating	Unit	Note	
	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Display Pattern: SNOW (Static)	ISS	VDD1=VDD2=VDD3=3.0V, Booster X5 Vop = 8.5 V, Bias=1/9 Ta=25 C	<u> 2000</u> 2	150	300	μΑ	
Display OFF	ISS	VDD1=VDD2=VDD3=3.0V, Booster X5 Vop = 8.5 V, Bias=1/9 Ta=25 C	<u> </u>	95	190	uA	
Power Down	ISS	VDD1=VDD2=VDD3=3.0V, Ta=25 C	_	8	16	μА	


Note:

The Current Consumption is DC characteristics

ELECTRO-OPTICAL CHARACTERISTICS 9.0

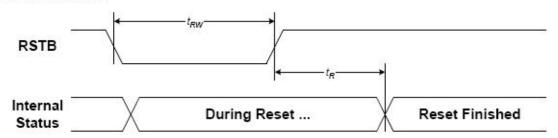
System Bus Timing for 4-Line Serial Interface

(VDD1 = 3.3V , Ta =25 °C)

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock period		tSCYC		50	83 8	30
SCLK "H" pulse width	SCLK	tSHW		25	8:3	1
SCLK "L" pulse width		tSLW		25	8-8	
Address setup time	40	tSAS		20	8 7 - 8	1
Address hold time	A0	tSAH		10		ns
Data setup time	OD A	tSDS		20	8 -8 8	
Data hold time	SDA	tSDH		10	\$ - \$	1
CSB-SCLK time	COR	tCSS		20	84—8	
CSB-SCLK time	CSB	tCSH		40	22 - 2	

(VDD1 = 2.8V, Ta =25°C)

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock period		tSCYC		100	32 33	
SCLK "H" pulse width	SCLK	tSHW		50	\$ - \$	1
SCLK "L" pulse width		tSLW		50	\$8 <u>—8</u> 6	
Address setup time	40	tSAS		30	82 8	1
Address hold time	A0	tSAH		20	8-3	ns
Data setup time	OD A	tSDS		30	85 8	
Data hold time	SDA	tSDH		20	· -	1
CSB-SCLK time	COD	tCSS		30	8 -8	ľ
CSB-SCLK time	CSB	tCSH		60	-	1



(VDD1 = 1.8V, Ta =25°C)

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock period		tSCYC		200	8 8	
SCLK "H" pulse width	SCLK	tSHW		80	19 -1 24	
SCLK "L" pulse width		tSLW		80	\$ = \$	1
Address setup time	A0	tSAS		60	y 50	1
Address hold time	Au	tSAH		30	3 <u>8—</u> 83	ns
Data setup time	OD A	tSDS		60	11 - 11	
Data hold time	SDA	tSDH		30	35—93	1
CSB-SCLK time	COR	tCSS		40	25	
CSB-SCLK time	CSB	tCSH		100	Y 30	1

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

Hardware Reset Timing

(VDD1 = 3.3V Ta =25°C)

Item	Symbol	Condition	Min.	Max.	Unit
Reset time	tR			1.0	
Reset "L" pulse width	tRW		1.0		us

(VDD1 = 2.8V, Ta =25°C)

Item	Symbol	Condition	Min.	Max.	Unit
Reset time	tR		535	2.0	
Reset "L" pulse width	tRW		2.0	34-33	us

(VDD1 = 1.8V, Ta =25°C)

Item	Symbol	Condition	Min.	Max.	Unit
Reset time	tR				2
Reset "L" pulse width	tRW		3.0	1 - 0	us

^{*2} All timing is specified using 20% and 80% of VDD1 as the standard.

10.0 STANDARD SPECIFICATION FOR RELIABILITY

Standard specification of Reliability Test 10.1

No.	Test Item	Content of Test	Test Condition
1	High temperature operation	Endurance test applying the high storage temperature for a long time.	+70°C for 500Hrs
2	Low temperature operation	Endurance test applying the low storage temperature for a long time.	-20°C for 500Hrs
3	Low temperature storage	Endurance test applying the low storage temperature for a long time.	-30 °C for 500hrs
4	High temperature storage	Endurance test applying the low storage temperature for a long time.	+80 °C for 500hrs
5	Damp heat Operation	Endurance test applying the electric stress and temperature / humidity stress to the element for a long time.	+60 °C, 95%RH for 500Hrs
6	Thermal cycles operation	Endurance test applying the thermal shock operation for a long time.	Display on , 2h at -30°C; shift from - 30°C to + 80°C with gradient of 3°C/min; 2 h at 80°C; shift from +80°C to - 30°C with gradient of 2°C/min, repeated 100 times.
7	Thermal shocks	Endurance test applying the thermal shock operation for a long time.	Display off, 1h at -30°C; shift from - 30°C to + 80°C in 10 s max. 1 h at 80°C; shift from + 80°C to - 30°C in 10 s max., repeated 100 times
8	Random vibrations	Endurance test applying the vibrations. for a long time when transportation	Test 3 axes during 8 hour/axe - from 5 to 200 Hz: Acc = 10G - from 200 to 500 Hz : Amplitude =5mm - from 5 to 12HZ. Scanning speed= 1 octave / min
9	ESD test	To check the immunity of display to ESD incurred during storage, handling, maintenance and assembly operation.	Discharge resistance = $2k\Omega$ Discharge capacitance = $150pF$ Number of discharges = 3 times Discharge interval = 3 sec Discharge voltage = ± 2 kV on COG connection interface.
10	FPC pull test	To verify the FPC/ glass connection resistance to pull forces applied to the FPC.	Keeping the LCD fixed, pull the FPC/FFC with a force F= 40 N for cm width of FPC at glass connection.

11	FPC peel test	To verify the FPC/ glass connection resistance to peel forces applied to the FPC.	Keeping the LCD fixed, pull the FPC/FFC according to the figure above with a force F= 10 N for cm width of FPC at glass connection. The minimum bending radius has to be 2 mm
----	---------------	---	---

- 1) For operation test, above specification is applicable when test pattern is changing during entire operation test.
- 2) Inspections after reliability tests are performed when the display temperature resumes back to room temperature.
- 3) It is a normal characteristic that some display abnormality can be seen during reliability test. If the display abnormality can resume back to normal condition at room temperature within 24hours, there is no permanent destruction over the display. The display still possesses its functionality after reliability tests.

10.2 **Failure Judgment Criteria**

After the reliability tests above, test sample shall be let return to room temperature and humidity for at least 4 hours before final tests are carried out.

Criterion Item	Failure Judgment Criteria
Electrical characteristic	Electrical short and open.
Mechanical characteristic	Out of mechanical specification
Optical characteristic	Out of the Appearance Standard

11.0 QUALITY ASSURANCE

11.1 Inspection Standard

Item	Contents
Objective	This product inspection standard is intended to provide an inspection guideline for the
	LCD or LCM products manufactured by the Company for automotive customer MM.
Scope	Applicable to the inspection criteria of dimension, appearance, functionality etc.for the
	LCD or LCM products supplied to the customer MM. Criteria not included in this
	Inspection Standard will be justified in accordance with any documents agreed upon
	otherwise.
Inspection Unit	An inspection unit is a unit of display under inspection. The unit for the dimension
	addressed in this inspection standard is referring to mm, unless otherwise specified.
Inspection System	1: Inspection system includes inspection during production inspection and outgoing
	product inspection.
	2: Process inspection is the inspection for appearance and functionality of the products
	during the production process.
	3: Outgoing inspection is the inspection for the finished products prior to the delivery,
	based on defined sampling plan.

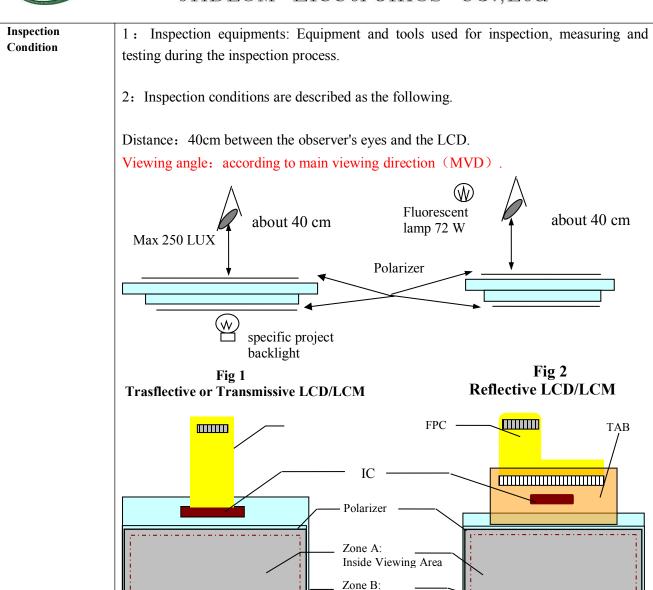


Fig 3 **Product Configuration**

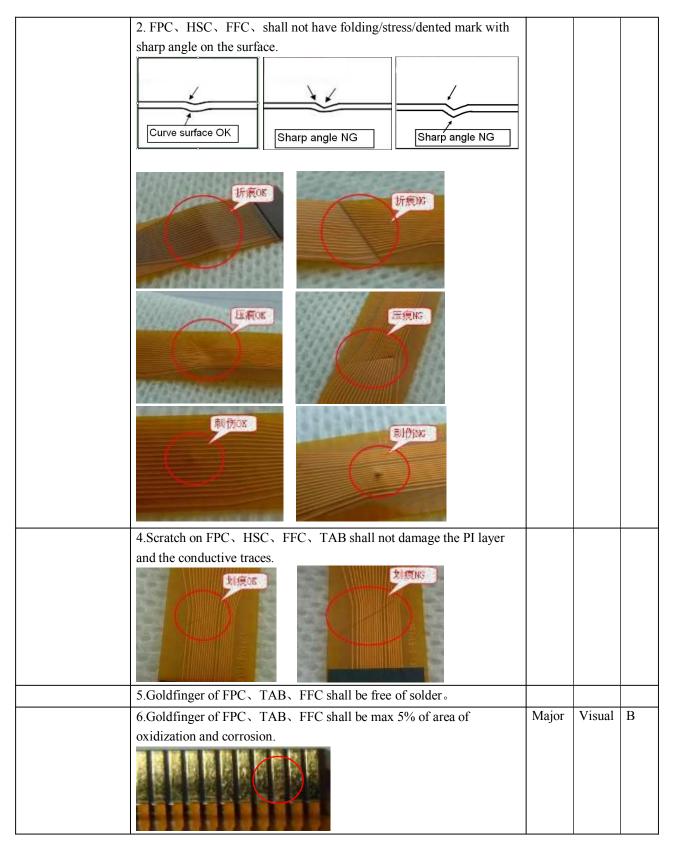
Outside Viewing Area

Acceptance Criteria (Zastron internal standard: JU-MM) 11.2

Inspection Item	Accepta	Defect Classification	Method	Applicable Zone			
Functional	 No display defect is not acceptable. Abnormal display defect is not acceptable. Missing segment and extra segment is not acceptable. Dim contrast or dark contrast is not acceptable. Current consumption (Idd MAX) shall not exceed the limit specified on the MI. Wrong/reversed viewing angle is not acceptable. Uneven contrast or stripe defect shall be in accordance with master sample. (Refer to specified limit sample if applicable) Display character/ pattern shall be referred to the Test Instruction of the related models. 				Major	Visual	A
Pattern Deformation	A — W A — W	Size A < 0.10 or A < 1 whichever is less A>0.10 or A>1/4 whichever is less ote: Protrusion shall tween adjacent segr	W,	Acceptable Number 1 per segment 3 per display Unlimted	Major	Visual Magni fier	A
Black or white spots (on pattern), pin hole	length width	Size, d (mm) $d \le 0.15$ $0.15 < d \le 0.25$ d > 0.25 = (length + width)	Accep U		Minor	Visual Magni fier	A

Chip-out	A. General chip-out (for glass edges and glass corner along perimeter	Minor	Visual	В
Cmp-out	seal)	IVIIIIOI	Magni	
			fier	
	Ls			
	X Y Z			
	\leq 2.0 \leq 1.5 or \leq Ls, whichever is less \leq 1/2t			
	\leq 2.0 \leq 1.0 or \leq Ls, whichever is less \leq t			
	X = length parallel with glass edge.Y = width perpendicular with glass edge			
	Z = height of glass			
	t = single glass thickness			
	Note:			
	Chip out shall not reach the perimeter seal.			
	B: Chip-out at terminal ledge or back of terminal ledge, but no	Minor	Visual	В
	exactly on terminal		Magni	
	$\begin{array}{ c c c c c }\hline X & Y & Z \\ \hline \leq 2.0 & \leq 1.5 & \leq 1/2t \\ \hline \leq 2.0 & \leq 1.0 & \leq t \\ \hline \end{array}$		fier	
	Note:			
	In the event that the distance between the chip-out location and the terminal is less than the width of ITO pad Le, the acceptance criteria of chip-out on terminal shall apply.			

	C: Chip-out and protube	rance at termina	ıls			Minor	Visual	В
	W /	A.c.	Meet t	he dimens			Magni fier	
	X ≤0.5 Le & not bridge two adjacent ITO pads.	Y ≤0.2L or ≤2. whichever is		Z ≤1/2t				
	Note: Chip out and protuberanc Protuberance is not allow	red if affect asser		e same ITO	O pad.	Minor	Visual	В
	D: Chip-out at corner (I	TO leage)	X ≤2.0	Y 0 ≤2.0	Z ≤t	Millor	Magni fier	D
Crack line	Crack line is not acceptab	nle e				Minor	Visual Magni fier	A & B
Number of Chipout	Maximum acceptable nur on ITO ledge. Distance between chip-ou	nber of chip-out	: 2 defec	ts per LCI); 1 defect	Minor	Visual	В



Black spot	A		Visual	Α
White spot	W Acceptable		Magni	II.
Bubble	D Number		fier	
Foreign material	D≤0.15 Unlimited	Minor		
Dent	L 0.15 <d≤0.25 1<="" td=""><td></td><td></td><td></td></d≤0.25>			
	D>0.25			
	Note: If 2 spots exist, the distance			
	must be > 20mm between each other			
	L			
	D= (L+W) /2			
Scratch line		Minor	Visual	A
Dark line			Magni	
Lint	Φ_{W}		fier	
	 			
	Acceptable Length Width Number			
	L≤3.0 W≤0.015 2			
	L≤1.5 W≤0.03 1			
	W>0.03 0			
	Note: If 2 line defects co-exist, the distance must be > 20mm between each other			
Endseal	20	Minor	Visual	A,B
	A: Length of end-sealant		Magni	
			fier	
	B: Length of seal mouth C: Perimeter seal wi			
	dth			
	1.Minimum amount of end-sealant filled, A> 1/3 B			
	2.Maximum amount of end-sealant shall not spread over to Zone A,			
	Viewing Area (VA).			
	3.Dimension of end seal shall meet the dimension specified on the			
	drawing.			
	4.Deformation of perimeter seal which result in perimeter seal			
Polarizer	becoming less than 1/3 C is not acceptable. Polarizer position shall meet the dimension tolerance indicated on the	Minor	Visual	A,B
1 Glarizei	drawing	Willion	Visuai	А,Б
Background color	Background color shall not exceed the range of the limit sample.	Minor	Visual	A
8	Obvious uneven coloration (rainbow) shall not be seen.			
Ink printing	1. Pattern position on the display shall match the MI/drawing.	Major	Visual	A
	2. Pattern appearance shall match the MI/drawing.	Major	Visual	
	3. Reverse printing is not acceptable.	Major	Visual	
	4. Printing color shall match the master sample.	Major	Visual	
	5. Insufficient ink, blur, missing pattern, broken pattern are not	Major	Visual	
	1 accentable			
	acceptable.6. Angle of the printed pattern, the dimension between the pattern	Major	Visual	

7. The printed patterns shall be free of stain, fing	geprint and scratch.	Major	Visual Magni fier	
8. Spot/pinhole on the pattern. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Acceptable Number Unlimited 1 0 de distance must be > n other	Major	Visual	
9. Ink pattern deformation A Protrusion ≤0.10 or ≤1/4W, whichever is less, Indentation ≤0.10 or ≤1/4W, whichever is less		Minor	Visual Magni fier	A
10. Ink line deformation A-B≤0.15		Minor	Visual Magni fier	A
11. Pattern misalignment 12 o'clock 60° 90° -60° 6 o'clock Dimension must meet the requirement on the draw For 12 o'clock viewing angle product, light leakage shall not be seen. For 6 o'clock viewing angle product, light leakage shall not be seen.	e between 90°to 60°	Minor	Visual	A
HSC 1. The outer dimension shall meet the MI/drawing. FPC FFC		Minor	Visual	В

Stiffening tape	1. The tape sticking position shall meet the requirement on the	Minor	Visual	В
	MI/drawing.			
Identity Label	2. Missing label/tape/marking is not acceptable.			
	3. The format of identification (including date code and product			
Identity marking	code) shall meet the requirement (eg. label,color marking, inkjet			
	printing) on the MI/drawing.			
Metal bezel	1. Dimension and specification shall meet the requirment on the	Major		В
	MI/drawing.			
	2.The lock tab of bezel shall not have wrong bending orientation,	Minor	Visual	В
	missing tab, or crack.			
	3.Bezel shall be free of rust, twist, deformation, finger print, oil stain and	Minor	1	В
	unknown contamination.			

12.0 PRECAUTIONS FOR USING LCD MODULE

12.1 Handing Precautions

- 12.1.1 The display panel is made of glass and polarizer. Do not subject it to mechanical shock by dropping or impact which may cause chipping especially on the edges.
- 12.1.2 Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 12.1.3 If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with Isopropyl alcohol or ethyl alcohol. Avoid using solvents like acetone (ketene), water, toluene, ethanol to clean the polarizer surface.
- 12.1.4 Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- 12.1.5 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 12.1.6 Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion.
- 12.1.7 Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- 12.1.8 NC terminal should be open. Do not connect anything.
- 12.1.9 If the logic circuit power is off, do not apply the input signals.
- 12.1.10 Avoid contacting oil and fats.
- 12 1 11 Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- 12.1.12 Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.

12.2 **Electro-Static Discharge Control**

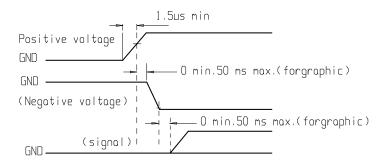
Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

深圳市晶惠迪电子有限公司

JHDLCM Electronics Co.,Ltd

- Be sure to ground the body when handling the LCD modules. Tools required for assembling, such as soldering irons, must be properly grounded.
- 12.2.3 To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions. To reduce the generation of static electricity, be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.
- 12.2.4 The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.
- 12.2.5 When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.

12.3 Precaution for soldering to the LCM


- 12.3.1 Observe the following when soldering lead wire, connector cable and etc. to the LCD module.
 - Soldering iron temperature: 300 ~ 350°C.
 - Soldering time: ≤ 3 sec.
 - Solder: eutectic solder.

Above is a recommended approach based on a 5mm distance between soldering point and pin contact point. Due to different solder composition, actual distance between soldering and contact point, and processing method, it is recommended that customer to study and fine tuning their soldering process parameters accordingly so that the temperature at pin-LCD contact point does not exceed 85°C during soldering..

12.3.2 If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage due to flux spatters.

12.4 Precautions for Operation

- 12.4.1 Viewing angle varies with the change of liquid crystal driving voltage (V_0) . Adjust V_0 to show the best contrast.
- Driving the LCD in the voltage above the limit shortens its lifetime.
- 12.4.3 Response time is greatly delayed at temperature below the operating temperature range. However, it will recover when it returns to the specified temperature range.
- 12.4.4 If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- 12.4.5 When turning the power on, input each signal after the positive/negative voltage becomes stable (below figure is a general illustration where typical value depends on individual product design).

深圳市晶惠迪电子有限公司

JHDLCM Electronics Co.,Ltd

12.5 Storage

- 12.5.1 When storing LCDs as spares for some years, the following precautions are necessary.
 - Store them in a sealed polyethylene bag. If properly sealed, there is no need for desiccant.
 - Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.
- 12.5.2 Environmental conditions:
 - Do not leave them for more than 168hrs. at 60°C.
 - Should not be left for more than 48hrs. at -20°C.

12.6 Safety

- 12.6.1 It is recommended to crush damaged or unnecessary LCD into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- 12.6.2 If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

13.0 MANUFACTURER CONTACT:

Address: East Part, 5/F, Buidling 9, Heng Ming Zhu Sha Jing Technology Indu. Park, Shajing Subdistrict, Bao'an District, 518104 Shenzhen, China

Tel: +86-755-27474605/27474625

FAX: +86-755-27364864 mail: jhdlcm@163.com

skype:jhdlcm